Abstract

The potential of carbon nanotubes (CNTs) in medical applications has been attracting constant research interest as well as raising concerns related to toxicity. The immune system serves as the first line of defense against invasion. In this work, interactions of oxidized multiwalled carbon nanotubes (MWCNT) with macrophages were investigated to unravel the activation profile of macrophages, using cytokine array, ELISA assay, transwell assay, confocal microscopy, and reactive oxygen species examination. Results show that MWCNT initiate phagocytosis of macrophages and upregulate CD14, CD11b, TLR-4/MD2, and CD206, which does not alter the MHCII expression of the macrophages. The macrophages engulfing MWCNT (MWCNT-RAW) secrete a large amount of MIP-1α and MIP-2 to recruit naïve macrophages and produce angiogenesis-related cytokines MMP-9 and VEGF, while inducing much lower levels of proinflammatory cytokines than those activated by LPS. In conclusion, MWCNT activate macrophages into a M1/M2 mixed status, which allows the cells to recruit naïve macrophages and support angiogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.