Abstract

AbstractIn this study, CNT/PP/PC conductive composite films were prepared by compounding PP (polypropylene)/PC (polycarbonate) (1:1) and carbon nanotubes (CNT) using a physical blending and hot pressing method. Next, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and water contact angle measurement are conducted in order to characterize the properties of CNT/PP/PC conductive films. The results showed there is no chemical reaction inside the PP/PC composite film with the addition of CNT. Neither the CNT composite film containing 3 wt% nor the control film decomposed thermally within 220°C. The water contact angle increased from 88.5° for the control film to 110.99° for the composite film containing 3 wt% CNT. This indicates that the film has good thermal stability and hydrophobic properties. The percolation threshold was obtained when the content of CNT was 3 wt%, and the best conductivity of the CNT/PP/PC composite film was 5.53 S/m at this time. In order to improve the tensile properties of the film, a small amount of polyurethane (TPU) was added to the film, and the maximum tensile strength was 24.91 Mpa when the content of TPU was 6.7%. This study can provide a strategy for the practical application of flexible electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call