Abstract

ABSTRACT Owing to their high thermal and optical performances, carbon nanotube (CNT) films are used in various photo-thermo-electric (PTE) applications, such as terahertz (THz) sensing and energy harvesting. To improve the performance of PTE devices, a device structure should be designed based on a deep understanding of the thermal and optical responses of the CNT film. However, the optical properties of CNT films in the THz frequency region remain unclear because of the difficulties associated with device processing and measurements. Herein, we report our findings on the thermal and optical characteristics of CNT films. The shape of the CNT film that maximizes the product of the thermal and optical factors (optimal structure of the PTE sensor) depends on the frequency of the irradiating electromagnetic wave. The optimal film thickness and width values for THz irradiation range from 300–600 nm and 50–70 µm, respectively. Subsequently, we fabricated a serially connected, multi-element PTE sensor with an optimal device structure and enhanced the detection sensitivity by approximately 13 times compared with a single-element PTE sensor. In addition, we demonstrated the first THz spectroscopy application using a PTE sensor. The findings of this study, thermal/optical factor enhancement, and micro-sized CNT film processing technology can be used to improve the performance of all CNT-based photothermal devices, including PTE sensors and thermoelectric generators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.