Abstract

Engineering of conjugated microporous polymers (CMPs) with high porosity, redox activity, and electronic conductivity is of significant importance for their practical applications in electrochemical energy storage. Aminated-multiwall carbon nanotubes (NH2 -MWNT) are utilized to modulate the porosity and electronic conductivity of polytriphenylamine (PTPA), which is synthesized via Buchwald-Hartwig coupling reaction of tri(4-bromophenyl)amine and phenylenediamine as constitutional units in a one-step in situ polymerization process. Compared to PTPA, the specific surface area of core-shell PTPA@MWNTs has been greatly improved from 32 to 484m2 g-1 . The PTPA@MWNTs exhibites an improved specific capacitance, with the highest value 410Fg-1 in 0.5M H2 SO4 at a current of 10Ag-1 achieve for PTPA@MWNT-4 due to the hierarchical meso-micro pores, high redox-activity and electronic conductivity. Symmetric supercapacitor assemble by PTPA@MWNT-4 has a capacitance of 216Fg-1 of total electrode materials and retains 71% of initial capacitance after 6000 cycles. This study gives new insights into the role of CNT templates in the adjustment of molecular structure, porosity, and electronic property of CMPs for the high-performance electrochemical energy storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.