Abstract

Pt, Pd and Pt x Pd y alloy nanoparticles (Pt 1Pd 1, Pt 1Pd 3, atomic ratio of Pt to Pd is 1:1, 1:3, respectively) supported on carbon nanotube (CNT) with high and uniform dispersion were prepared by a modified ethylene glycol method. Transmission electron microscopy images show that small Pt and Pt x Pd y nanoparticles are homogeneously dispersed on the outer walls of CNT, while Pd nanoparticles have some aggregations and comparatively larger particle size. The average particle sizes of Pt/CNT, Pt 1Pd 1/CNT, Pt 1Pd 3/CNT and Pd/CNT obtained from the Pt/Pd (2 2 0) diffraction peaks in the X-ray diffraction patterns are 2.0, 2.4, 3.1 and 5.4 nm, respectively. With increasing Pd amount of the catalysts, the mass activity of formic acid oxidation reaction (FAOR) on the CNT supported catalysts increases in both cyclic voltammetry (CV) and chronoamperometry (CA) tests, although the particle size gets larger (thus, the relative surface area gets smaller). The CV study indicates a ‘direct oxidation pathway’ of FAOR occurred on the Pd surface, while on the Pt surface, the FAOR goes through ‘CO ads intermediate pathway’. Pd/CNT demonstrates 7 times better FAOR mass activity than Pt/CNT (2.3 mA/mgPd vs. 0.33 mA/mgPt) at an applied potential of 0.27 V ( vs. RHE) in the CA test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.