Abstract

In this study, we evaluated the transformation of algal-based biochar into carbon nanotubes by irradiation in a microwave oven at low energies (100–300 W). Three species of algae (Macrocystis pyrifera, Sarcothalia crispata, and Scenedesmus almeriensis) were selected and pyrolyzed to obtain biochar for carbon nanotubes (CNTs) growth in the presence of ferrocene as the catalyst. The CNTs obtained were characterized by dynamic light scattering, UVVIS spectroscopy, Raman spectroscopy, transmission electron microscopy, X-ray diffraction, and electrical conductivity. The results indicate that algal biochar can be used for CNT growth. The heterogeneous structure of algal biochar can initiate the graphitization process for the formation of CNTs. The characteristics of synthesized CNTs vary with the biochar source used as a precursor. Thus, both the degree of graphitization of the wall and the content of nanotubes were higher using biochar with higher carbon content (from microalga Scenedesmus almeriensis); otherwise, the hydrodynamic diameter and electrical conductivity were higher using biochar with upper mineral ash content (from microalga Macrocystis pyrifera). Furthermore, it was found that a low catalyst concentration was required to promote growth due to the reactivity of the mineral ash of the biochar, and it was demonstrated that microwave heating conditions, such as microwave power and temperature, lead to variations in the optical properties of CNTs, such as the band gap energy, CNTs content, and measurement of the size such as the hydrodynamic diameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.