Abstract

A two-component hydrogelator (16-A)2 -V(2+) , comprising an l-alanine-based amphiphile (16-A) and a redox-active viologen based partner (V(2+) ), is reported. The formation the hydrogel depended, not only on the acid-to-amine stoichiometric ratio, but on the choice of the l-amino acid group and also on the hydrocarbon chain length of the amphiphilic component. The redox responsive property and the electrochemical behavior of this two-component system were further examined by step-wise chemical and electrochemical reduction of the viologen nucleus (V(2+) /V(+) and V(+) /V(0) ). The half-wave reduction potentials (E1/2 ) associated with the viologen ring shifted to more negative values with increasing amine component. This indicates that higher extent of salt formation hinders reduction of the viologen moiety. Interestingly, the incorporation of single-walled carbon nanotubes in the electrochemically irreversible hydrogel (16-A)2 -V(2+) transformed it into a quasi-reversible electrochemical system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.