Abstract

The potential applications of carbon nanotubes are varied. Although it has long been known that solid carbon can reduce SiO2 to its gaseous state at high temperatures, exploiting this reaction to pattern surfaces with carbon nanotubes has never been demonstrated. Here we show that carbon nanotubes can act as the carbon source to reduce (etch) silicon dioxide surfaces. By introducing small amounts of oxygen gas during the growth of single-walled carbon nanotubes (SWNTs) in the chemical vapour deposition (CVD) process, the nanotubes selectively etch one-dimensional nanotrenches in the SiO2. The shape, length and trajectory of the nanotrenches are fully guided by the SWNTs. These nanotrenches can also serve as a mask in the fabrication of sub-10-nm metal nanowires. Combined with alignment techniques, well-ordered nanotrenches can be made for various high-density electronic components in the nanoelectronics industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.