Abstract

Site selective growth of vertically aligned carbon nanotubes (VACNTs), using floating catalyst based chemical vapor deposition (FC-CVD), can be achieved by proper use of carbon nanotube growth inhibitors. Here, we present a detailed study on the inhibition properties of Au and Pt thin films in ferrocene catalyzed FC-CVD. Elemental composition and chemical state analysis, at different depths of the growth substrates, were performed using X-ray photoelectron spectroscopy. Propensity of Fe to diffuse into the growth substrate was stronger in the case of Pt coated SiO2 as compared to Au coated or pristine SiO2 substrates. Increase in catalyst concentration or decrease in film thickness resulted in a loss of inhibition action of Au, whereas inhibition action of Pt was unaffected. Diffusion of C, Si, Cr and O in Au were different from that in Pt. Our data provides new insights into growth inhibition processes and explains some of the contradictions in previously published reports. The inhibitor based FC-CVD technique was used to make flexible VACNT/polymer circuits, suitable for bio-electronic applications. Electrical sheet resistance, electrochemical double layer capacitance, and charge storage capacity of the VACNT/polymer films, were found to be approximately 135 Ω/□, 1 mF/cm2 and 19 mC/cm2, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.