Abstract

We attempted to mimic collagen fibrils bearing apatite crystals in natural bone, using gelatin, carboxylic acid functionalized carbon nanotubes (f-CNTs), and hydroxyapatite (HA). Gelatin molecules were covalently grafted on the surface of f-CNTs by the formation of amide linkages. HA crystals were then assembled onto the gelatin-grafted f-CNTs in a highly concentrated CaP solution, resulting a multilayered core–shell structure, consisting of a f-CNT core and gelatin-HA shells (as a fibrous multilayered f-CNT/Gel/HA nanohybrid), and in a similar formation to the collagen fibers of natural bone. The tensile strength, elastic modulus, and elongation rate of the new hybrid material were significantly improved compared to both pure (f-CNT free) gelatin and a mixture of f-CNT and gelatin, by 4.6–8.8, 9–10, and 28–42 times, respectively. Cell viability studies of the f-CNT/Gel/HA nanohybrid also suggest a higher degree of biocompatibility compared to pure gelatin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.