Abstract

AbstractAcetabular cup liners made of ultra‐high molecular weight polyethylene (UHMWPE), in hip implants fail mostly due to wear debris generation and poor wear resistance. Consequently, strengthening UHMWPE becomes essential. The current work exhibits how the addition of 5 vol% carbon nanotubes (CNT) and functionalized carbon nanotubes (fCNT) in UHMWPE (denoted as U) affects the mechanical properties (hardness, elastic modulus) and tribological properties (wear resistance) of biocomposites. To form a composite, powders were mixed using a planetary centrifugal mixer followed by freeze‐drying to disperse‐CNTs, followed by its compression molding at 220°C for 1 h at 10 MPa. With the addition of CNT and fCNT, ≥95% densification was obtained for all samples resulting an increase in hardness and elastic modulus from 74.96 MPa to 168.11 MPa (124%) and 1.65 GPa to 2.96 GPa (79%), respectively, which led to the reduction in wear rate from 12.5 × 10−5 mm3/Nm (U) to 2.5 × 10−5 mm3/Nm (UfCNT). The amount of apatite formation enhanced from U (58.2%) to UfCNT (65.1%) is confirmed via X‐ray diffraction and X‐ray photoelectron spectroscopy. Cell proliferation studies have validated the cytocompatible efficacy of U‐CNT composites with osteoblast‐like MG‐63 cells, making UfCNT as potential material for acetabular cup liners.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.