Abstract

To mitigate lithium-polysulfides (Li-PSs) shuttle in lithium-sulfur batteries (LiSBs), a unique carbon-nanotube-encapsulated-sulfur (S@CNT) cathode material with optimum open-ring sizes (ORSs) on the CNT walls were designed using an integrated computational approach followed by experimental validation. By calculating the transport barrier of Li+ ion through ORSs on the CNT walls and comparing the molecular size of solvents and Li-PSs with ORSs, optimum open-rings with 16-30 surrounding carbon atoms were predicted to selectively allow transportation of Li+ ion and evaporated sulfur while blocking both Li-PS and solvent molecules. A CNT oxidation process was proposed and simulated to generate these ORSs, and the results indicated that the optimum ORSs can be achieved by narrowly controlling the oxidation parameters. Subsequently, S@CNT cathodes were experimentally synthesized, confirming that optimum ORSs were generated in CNT oxidized at 475 K and exhibited more stable cycling behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.