Abstract

A low-cost, label-free, ultra-sensitive electric immunoassay is developed for the detection of swine influenza virus (SIV) H1N1. The assay is based on the excellent electrical properties of single-walled carbon nanotubes (SWCNTs). Antibody–virus complexes influence the conductance of underlying SWCNT thin film, which has been constructed by facile layer-by-layer self-assembly. The basic steps of conventional immunoassay are performed followed by the electric characterization of immunochips at the last stage. The resistance of immunochips tends to increase upon surface adsorption of macromolecules such as poly- l-lysine, anti-SIV antibodies, and SIVs during the assay. The resistance shift after the binding of SIV with anti-SIV antibody is normalized with the resistances of bare devices. The sensor selectivity tests are performed with non-SIVs, showing the normalized resistance shift of 12% as a background. The detection limit of 180 TCID 50/ml of SIV is obtained suggesting a potential application of this assay as point-of-care detection or monitoring system. This facile CNT-based immunoassay also has the potential to be used as a sensing platform for lab-on-a-chip system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.