Abstract

Plasticized polyvinyl chloride (PVC) gel has large deformation under an applied external electrical field and high driving stability in air and is a candidate artificial muscle material for manufacturing a flexible actuator. A porous PVC gel actuator consists of a mesh positive pole, a planar negative pole, and a PVC gel core layer. The current casting method is only suitable for manufacturing simple 2D structures, and it is difficult to produce multilayer porous structures. This study investigated the feasibility of a 3D-printed carbon nanotube-doped silicone electrode for manufacturing multilayer porous PVC gel artificial muscle. Carbon nanotube-doped silicone (CNT-PDMS) composite inks were developed for printing electrode layers of PVC gel artificial muscles. The parameters for the printing plane and mesh electrodes were explored theoretically and experimentally. We produced a CNT-PDMS electrode and PVC gel via integrated printing to manufacture multilayer porous PVC artificial muscle and verified its good performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.