Abstract

Carbon nanotube (CNT) decorated magnetic microspheres were fabricated to develop a multimodal platform that utilizes non-covalent molecular interactions of CNTs to magnetically separate biomolecules. Hybrid CNT-microspheres prepared by a feasible method reported herein had a well-defined structure as characterized by Raman spectroscopy and scanning electron microscopy. Binding interactions of resulting magnetic CNT-microspheres with DNA oligonucleotides were studied to demonstrate that single stranded DNA (ssDNA) in a solution can be effectively recovered by magnetic CNT-microspheres through strong physical wrapping of DNA around CNTs' walls. The magnetic character of these CNT-microspheres combined with their capability to bind other molecules including DNA allows their use as an affinity matrix that can be utilized in affinity separation of biomolecules, and also as a platform to monitor non-covalent binding interactions of CNTs with other biomolecules. As a proof of concept, we report on the use of these CNT-microspheres in in vitro selection of ssDNA aptamers against carcinoembryonic antigen (CEA), a cancer biomarker, by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). ssDNA aptamer candidates that have strong affinity towards CEA were successfully separated magnetically from a pool of ssDNA (∼1014 molecules). Our results demonstrate that CNT-microspheres can serve as strong tools for affinity separation methodologies and can be utilized for various affinity pairs in solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.