Abstract

Light structures of the composite materials are prominent outcomes for reducing the total stack weight. However, the poor electrical properties of the composite structures pose an obstacle to wide employment as a bipolar plate for the PEMFC systems. In the current study, the carbon fiber/epoxy composite laminates were modified with the multi-walled carbon nanotube superconductor materials to overcome conductivity issues. The effects of CNTs additives in a range of 0.25–1.25% wt on the electrical, mechanical, and performance features of the carbon fiber/epoxy laminates were investigated. Electrical conductivities of the nonconductive carbon fiber/epoxy plates increased with the rising additive ratio, as expected, and reached 120 S/cm for the 1.25% CNT reinforcement. Although the mechanical strength of the pristine composite BP is already satisfactory, CNTs can increase the flexural strength and flexural modulus of the BP up to 42% and 27%, respectively. Each composite plate was subjected to the single-cell performance test. 1.25% wt CNT modified plate was executed pretty close performance compared to the aluminum alloy (AA 3105) bipolar plate under the same conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.