Abstract

A methodology was devised to evaluate the newly-developed carbon nanotube reinforced polymer composites by means of mechanical performance and manufacturing cost. Glass fibre reinforced-epoxy composite plates were produced having different parameters: (a) three manufacturing processes, (b) geometrical dimensions, (c) carbon nanotubes concentration in the epoxy resin and finally (d) modified resin infusion temperature. Tensile coupons were machined out of the manufactured plates and their quasi-static mechanical properties were evaluated. Three cost models were developed to assess plates and tensile coupons manufacturing cost for each different case. Optimal values were evaluated for major manufacturing parameters, driving force being the mechanical properties of interest (quality) as well as their low manufacturing cost. It is demonstrated that the added cost to manufacture such nano-reinforced composites is attributed to increase strength on the expense of ductility; the main benefit of the carbon nanotube-based polymer composites seems to be their ability to be monitored. Almost 20% added cost is paid to attain this new function of piezo-resistivity for the RTM process, while this amount further increases for the non-automated processes such as the Hand Lay-up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.