Abstract

Here we discuss the photon-driven transport of protons and electrons over hundreds of microns through a membrane based on vertically aligned single-walled carbon nanotubes (SWNTs). Electrons are photogenerated in colloidal CdSe quantum dots that have been noncovalently attached to the carbon nanotube membrane and can be delivered at potentials capable of reducing earth-abundant molecular catalysts that perform proton reduction. Proton transport is driven by the electron photocurrent and is shown to be faster through the SWNT-based membrane than through the commercial polymer Nafion. The potential utility of SWNT membranes for solar water splitting applications is demonstrated through their excellent proton and electron transport properties as well as their ability to interact with other components of water splitting systems, such as small-molecule electron acceptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.