Abstract
A practical approach for controlling the morphology and electrochemical properties of electroactive materials is proposed. In this study, manganese oxide films were galvanostatically deposited in the presence of a small amount of carbon nanotube (CNT). The resulting film cannot be considered as a CNT-based nanocomposite, as no CNT is detected by electron microscopy. However, the manganese oxide electrodeposited delivers an excellent pseudo-capacitive behavior to be used as a superior supercapacitor. The samples prepared by applying a current density of 3.0 mA cm−2 showed a specific capacitance of 280 F g−1. As it seems that the capacitance of this electrode is related to the chemisorption of the alkali cation, an extremely high specific capacitance of 434 F g−1 was achieved in a saturated medium of Li electrolyte. This high specific capacitance can be attributed to a bulk process. The presence of carbon nanotubes results in the formation of nanostructured films which provide a better accessibility for capacitive behavior. Although the exact mechanism for this phenomenon is still vague, the presence of carbon nanotubes (probably as a solid charge carrier) close to the electrode surface is apparently responsible for a different pathway for the electrodeposition process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.