Abstract

Hybrid materials based on carbon nanotubes (CNTs) and polymers have shown attractive properties and potential applications. However, the poor quality and aggregation of CNTs are challenging during the preparation of hybrid materials. To address these issues, we fabricated the vertically aligned (VA) CNT (open-end) hybrid membrane with annealing treatment, which significantly improves the phenol separation performance, single gas permeability of CO2 and N2, and binary CO2/N2 mixture separation performance. The free volume provided by the orderly CNT channels and their atomically smooth walls contribute to the markedly increased diffusion rate and permeability of the membrane. The density functional theory (DFT) calculations indicate that the small molecules in the membrane preferentially transport along the internal channels of CNTs. Furthermore, this membrane also has excellent conductivity and resistance stability after 50 cycles of tensile deformation. For the first time, it reveals that this unique structured CNTs membrane can be applied in environmental, gas separation, and electronics fields with superior performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.