Abstract

We present a realization of carbon nanotube alignment. Surface acoustic waves are applied to a multiwalled carbon nanotube suspension and the lateral piezoelectric field of the standing wave aligns the carbon nanotubes with an angle of 25° to 45° on LiNbO3 with respect to the direction of wave propagation. This angle results from a superposition of the aligning electric field and a perpendicular fluidic flux in the carbon nanotube suspension caused by the energy transfer from the surface acoustic wave into the liquid. On LiTaO3, the multiwalled carbon nanotubes align parallel to the wave vector due to negligible fluidic processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.