Abstract

Advent of nanotechnology has generated huge interest in application of carbon-based nanomaterials as a possible replacement for conventionally used graphite as anode of Li-ion batteries. Future Li-ion batteries demand high capacity, energy, power, and better safety, while graphite falls short of fulfilling all these necessities. Inspired by high conductivity, flexibility, surface area, and Li-ion insertion ability, a number of nano carbon materials, individually or as a composite, have been studied in detail to identify the best suitable material for next-generation energy storage devices. Many of these nano-C-based structures hold good promise, although issues like density of nanomaterials and scalability are yet to be addressed with confidence. This article aims to summarize the major research directions of nano-C materials in anodic application of Li-ion batteries and proposes possible future research directions in this widely studied field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.