Abstract

Drought is an important threat worldwide, therefore, it is vital to create workable solutions to mitigate the negative effects of drought stress. To this end, we investigated the interactive effect of compost (Comp), arbuscular mycorrhizal fungi (AMF) and carbon nanoparticles (CNPs) on maize plant crops under drought stress. The combined treatments were more effective at increasing soil fertility and promoting the growth of maize plants under both control and drought stress conditions by 20.1% and 39.4%, respectively. The interactions between treatments, especially the effects of Comp-AMF-CNPs mixture, reduce the activity of photorespiration induced H2O2 production that consequently reduces drought-related oxidative damages (lipid peroxidation and protein oxidation). Plants treated with Comp-AMF or Comp-AMF-CNPs showed an increase in their antioxidant defense system. Comp-AMF-CNPs increased enzyme activities by 50.3%, 30.1%, and 71% for ascorbate peroxidase (APX), dehydro-ASC reductase (DHAR), and monodehydro-ASC reductase (MDHAR), respectively. Comp-AMF-CNPs also induced the highest increase in anthocyanins (69.5%) compared to the control treatment. This increase was explained by increased anthocyanin percussor, by 37% and 13% under control and drought, respectively. While the increases in biosynthetic key enzymes, phenylalanine aminolayse (PAL) and chalcone synthase (CHS) were 77% and 5% under control and 69% and 89% under drought, respectively. This work advanced our understanding on how Comp-AMF-CNPs improve growth, physiology, and biochemistry of maize plants under drought stress conditions. Overall, this study suggests the effectiveness of Comp-AMF-CNPs as a promising approach to enhance the growth of maize plants in dry areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call