Abstract
Quinoline (QN) is highly toxic and carcinogenic and has been detected in soil, groundwater, and biological tissues. Advanced oxidation processes (AOPs) have shown promise to address its degradation in wastewater treatment, with catalytic wet peroxide oxidation (CWPO) being highlighted due to its cost-effectiveness and mild operation. However, developing active and inexpensive catalysts is crucial for CWPO’s effectiveness. Another pressing issue is the accumulation of mixed, dirty plastic solid waste (PSW), particularly polyolefins used in packaging. Although recycling rates have increased, much plastic packaging remains in landfills. However, polyolefins can be converted into carbon-based nanostructured materials (CNMs), such as carbon nanotubes (CNTs), through chemical vapor deposition (CVD) using PSW as a carbon precursor. While many studies focus on CNT preparation, their application is often overlooked. In this context, this work proposes the preparation of CNMs, particularly CNTs, through CVD using a single-stage pyrolysis reactor. Polyolefins (LDPE, HDPE, and PP), both individually and in a mixture simulating PSW, were used as carbon sources. Given a sufficiently high temperature, the desired CNT architecture was successfully synthesized regardless of the starting polymer. These CNMs were then tested as catalysts for CWPO in simulated wastewater containing QN. The results showed a rapid degradation of QN (30–120 min) and high removals of total organic carbon (TOC) and aromatic compounds (75% and >90%, respectively), demonstrating the applicability of PSW-derived CNTs in the CWPO process for QN abatement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.