Abstract

Superfluous zinc ion (Zn2+) in living cells has been identified as a potential tumor biomarker for early cancer diagnosis and cancer progression monitoring. In this paper, we developed a novel carbon nanohorns/Pt nanoparticles/DNA (CNHs/Pt NPs/DNA) nanoplatform based on the clamped hybridization chain reaction (c-HCR) process for intracellular Zn2+ imaging and enhanced cooperative phototherapy of cancer cells. Cross-shaped DNAzyme (c-DNAzyme), hairpin DNA1, hairpin DNA2, and aptamer DNA were adsorbed onto the surfaces of CNHs/Pt NPs, and the fluorescence of carboxytetramethyl-rhodamine was also quenched. After entering the living cells, the c-DNAzyme was cleaved to output trigger DNA in the existence of intracellular Zn2+ and initiate the c-HCR process for fluorescence amplification. Compared with the single HCR process triggered by a single DNAzyme, the c-HCR process could further improve the amplification efficiency and sensitivity. In addition, such a nanoprobe possesses a catalysis-enhanced photodynamic effect by Pt NP generation of oxygen in a tumor microenvironment and increases the photothermal effect by loading of Pt NPs on CNHs, indicating that this is a promising biological method for cancer diagnosis and cancer cell therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.