Abstract

A combination of density functional theory (DFT) methods and quantum transport theory (QTT) has been used to investigate the spectroscopic, electronic, and thermoelectric properties of carbon nanohoop molecules with different molecular templates. The connectivity type, along with inherent strain, impacts the transport behavior and creates a destructive quantum interference (DQI), which proves itself to be a powerful strategy to enhance the thermoelectric properties of these molecules, making them promising candidates for thermoelectric applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call