Abstract

Cycloparaphenylene molecules, commonly known as "carbon nanohoops", have the potential to serve as building blocks in constructing carbon nanotube architectures. The singlet and triplet excited-state characteristics of [9]-cycloparaphenylene ([9]CPP) and [12]-cycloparaphenylene ([12]CPP) have now been elucidated using time-resolved transient absorption and emission techniques. The fluorescence quantum yields (Φ) of [9]CPP and [12]CPP were determined to be 0.46 and 0.83, respectively. Rates of nonradiative recombination (knr), radiative recombination (kr), and intersystem crossing (kisc) determined in this study indicate that radiative decay dominates in these nanohoop structures. The triplet extinction coefficient was determined through energy transfer with biphenyl, and the triplet quantum yield (ΦT) was calculated to be 0.18 and 0.13 for [9]CPP and [12]CPP, respectively. The rate of triplet state quenching by oxygen was measured to be 1.7 × 10(3) ([9]CPP) and 1.9 × 10(3) s(-1) ([12]CPP). The excited-state dynamics established in this study enable us to understand the behavior of a carbon nanotube-like structure on a single subunit level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.