Abstract

Carbon nanofibrous sheets (conductivity 1.9 to 35.5 S×cm-1, water contact angle up to 137°) consisting of amorphous fibers with diameter of 20 – 150 nm (C:O atomic ratio 25.4 – 86.0) were synthesized by carbonization of cellulose regenerated from electrospun cellulose acetate mats with three methods of alkaline deacetylation. It was established that C:O atomic ratio, conductivity and hydrophobicity depended on the regeneration method and on the temperature of carbonization. The highest flexibility, lowest conductivity and lowest water contact angle was observed for carbon synthesized from cellulose regenerated with NaOH in ethanol (0.05 mol/l) for 24 hours at room temperature. The highest conductivity, highest water contact angle and lowest flexibility was observed for carbon synthesized from cellulose regenerated with water solution of NaOH/NaCl (3.75 M NaOH, 2.1 M NaCl) during 15 minutes at 65°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.