Abstract

Developing low-cost, portable, and high-performance humidity sensors for respiratory monitoring has received considerable attention in recent years. Herein, humidity sensors have been fabricated based on carbon nanodots (CDs), which exhibit high sensitivity (5318%) at 94% relative humidity (RH) and excellent long-time stability under the RH range of 11% to 94%. The high sensitivity can be attributed to the adsorption of the water molecules by the massive hydrophilic functional groups on the surface of CDs. By introducing a breath-driven triboelectric nanogenerator (TENG), the self-powered humidity sensor is developed for the first time, exhibiting a wide sensing range (11–94% RH) and excellent stability. The maximum output voltage of the TENG is up to 200 V and the maximum short-circuit current is about 9.2 μA. Furthermore, the self-powered humidity sensor further demonstrates the potential ability for real-time respiration monitoring, which can detect different breathing statuses. This work provides a convenient and low-cost strategy for constructing sensitive CDs-based humidity sensors, and prospects their applications in respiratory monitoring systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call