Abstract

BackgroundAt low levels, carbon monoxide (CO) has been shown to have beneficial effects on multiple organs and tissues through its potential anti-inflammatory, anti-apoptotic, and anti-proliferative properties. However, the effect of CO-releasing molecule (CORM)-3, a water-soluble CORM, on ischemic stroke and its mechanism of action are still unclear.MethodsWe investigated the role of CORM-3 in the mouse model of transient middle cerebral artery occlusion (tMCAO). CORM-3 or saline was administered to mice by retro-orbital injection at the time of reperfusion after 1-h tMCAO or at 1 h after sham surgery. We assessed infarct volume and brain water content at 24 and 72 h after ischemia, blood-brain barrier permeability at 6 and 72 h after ischemia, and neurologic deficits on days 1, 3, 7, and 14.ResultsAmong mice that underwent tMCAO, those that received CORM-3 had significantly smaller infarct volume and greater expression of neuronal nuclear antigen (NeuN) and microtubule-associated protein 2 than did saline-treated mice. CORM-3-treated mice had significantly fewer activated microglia in the peri-infarction zone than did control mice and exhibited downregulated expression of ionized calcium-binding adapter molecule (Iba)-1, tumor necrosis factor-α, and interleukin 1β. CORM-3-treated mice had significantly lower brain water content and enhanced neurologic outcomes on days 3, 7, and 14 post-tMCAO. Lastly, CORM-3 treatment reduced Evans blue leakage; increased expression of platelet-derived growth factor receptor-β, tight junction protein ZO-1, and matrix protein laminin; and decreased protein level of matrix metalloproteinase-9.ConclusionCORM-3 treatment at the time of reperfusion reduces ischemia-reperfusion-induced brain injury by suppressing neuroinflammation and alleviating blood-brain barrier disruption. Our data suggest that CORM-3 may provide an effective therapy for ischemic stroke.

Highlights

  • At low levels, carbon monoxide (CO) has been shown to have beneficial effects on multiple organs and tissues through its potential anti-inflammatory, anti-apoptotic, and anti-proliferative properties

  • Carbon monoxide-releasing molecule-3 (CORM-3) treatment reduces cerebral infarct volume and increases protein levels of neuronal nuclear antigen (NeuN) and microtubule-associated protein 2 (MAP2) after transient middle cerebral artery occlusion (tMCAO) triphenyltetrazolium chloride (TTC) staining showed that the infarct volume of the tMCAO + saline group was significantly larger than that of the tMCAO + CO-releasing molecule (CORM)-3 group on days 1 and 3 after surgery (Fig. 1a–d)

  • Western blot analysis revealed that the expression levels of NeuN and MAP2 were significantly lower in the tMCAO + saline group than in the Sham + saline group on day 3

Read more

Summary

Introduction

Carbon monoxide (CO) has been shown to have beneficial effects on multiple organs and tissues through its potential anti-inflammatory, anti-apoptotic, and anti-proliferative properties. Carbon monoxide-releasing molecules (CORMs), a group of compounds capable of carrying and liberating controlled quantities of CO, have shown promise for delivering exogenous CO without altering COHb to toxic levels [11, 18,19,20]. The mechanisms by which CORM-derived CO might offer its beneficial effects have not yet been thoroughly investigated, many studies substantiate the protective role of CORM-derived CO against cellular and tissue damage in numerous models of injury, such as renal ischemia-reperfusion injury, hemorrhagic stroke, traumatic brain injury, transplantation, sepsis, hypertension, and cardiovascular disorders [21,22,23,24,25,26,27,28]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call