Abstract

Recently, in animals, carbon monoxide (CO), like nitric oxide (NO), was implicated as another important physiological messenger or bioactive molecule. Previous researches indicate that heme oxygenase (HO)-1 (EC 1.14.99.3) catalyzes the oxidative conversion of heme to CO and biliverdin IXa (BV) with the concomitant release of iron. However, little is known about the physiological roles of CO in plant, especially in stomatal movement of guard cells. In the present paper, the regulatory role of CO during stomatal movement in Vicia faba was surveyed. Results indicated that, like sodium nitroprusside (SNP), CO donor hematin induced stomatal closure in dose- and time-dependent manners. These responses were also proved by the addition of gaseous CO aqueous solution with different concentrations, showing for the first time that CO and NO exhibit similar regulation role in the stomatal movement. Moreover, our data showed that 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO)/N(G)-nitro-L-arginine-methyl ester (L-NAME) not only reversed stomatal closure by CO, but also suppressed the NO fluorescence induced by CO, implying that CO-induced stomatal closure probably involves NO/nitric oxide synthase (NOS) signal system. Additionally, the CO/NO scavenger hemoglobin (Hb) and CO-specific synthetic inhibitor zinc protoporphyrin IX (ZnPPIX), NO scavenger cPTIO and NOS inhibitor L-NAME reversed the darkness-induced stomatal closure and NO fluorescence. These results show that, maybe like NO, the levels of CO in guard cells of V. faba is higher in dark than that in light, HO-1 and NOS are the enzyme systems responsible for generating endogenous CO and NO in darkness, respectively, and that CO being from HO-1 mediates darkness-induced NO synthesis in guard cells' stomatal closure of V. faba.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call