Abstract
Cisplatin resistance remains a major impediment to effective treatment of ovarian cancer. Despite initial platinum responsiveness, thiol-containing peptides and proteins, glutathione (GSH) and metallothionein (MT), bind and inactivate cisplatin in cancer cells. Indeed, high levels of GSH and MT in ovarian cancers impart cisplatin resistance and are predictive of poor prognosis. Cystathionine β-synthase (CBS), an enzyme involved in sulfur metabolism, is overexpressed in ovarian cancer tissues and is itself associated with cisplatin resistance. Treatment with exogenous carbon monoxide (CO), a known inhibitor of CBS, may mitigate cisplatin resistance in ovarian cancer cells by attenuation of GSH and MT levels. Using a photo-activated CO-releasing molecule (photoCORM), [Mn(CO)3(phen)(PTA)]CF3SO3 (phen = 1,10-phenanthroline, PTA = 1,3,5-triza-7-phosphaadamantane) we assessed the ability of CO to sensitize established cisplatin-resistant ovarian cancer cell lines to cisplatin. Cisplatin-resistant cells, treated with both cisplatin and CO, exhibited significantly lower cell viability and increased poly (ADP-ribose) polymerase (PARP) cleavage versus those treated with cisplatin alone. These cisplatin-resistant cell lines overexpressed CBS and had increased steady state levels of GSH and expression of nuclear MT. Both CO treatment and lentiviral-mediated silencing of CBS attenuated GSH and nuclear MT expression in cisplatin resistant cells. We have demonstrated that CO, delivered from a photoCORM, sensitizes established cisplatin-resistant cell lines to cisplatin. Furthermore, we have presented strong evidence that the effects of CO in circumventing chemotherapeutic drug resistance is at least in part mediated by the inactivation of endogenous CBS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.