Abstract

Pure Fe2O3 compacts were fired at 1373K for one hour then reduced with CO at 973-1373K. Reduction was followed up by means of weight-loss technique whereas volume change was measured by displacement method. The structure of the fired and reduced compacts was examined by reflected light microscope while the different phases were identified by X-ray diffraction technique. These measurements together with kinetic data were correlated for better understanding the gas-solid reaction mechanisms and the accompanying swelling phenomenon. A highest swelling value of 176% was obtained for compacts completely reduced at 1173K whereas a maximum swelling of 224% was obtained for compacts 90% reduced at the same temperature. At all reduction temperatures swelling increased with the increase in reduction extent up to 90% where a maximum swelling value was obtained followed by a small decrease in swelling when compacts were completely reduced. Excessive swelling was attributed to the carbon in metallic iron and/or iron carbide formed and their reactions with oxygen forming CO and/or CO2. A mechanism of disintegration of iron grains and swelling of the compacts has been proposed and correlated with reduction conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.