Abstract
The stress-inducible gene heme oxygenase-1 (HO-1) provides protection against oxidative stress. Although the mechanisms by which HO-1 exerts its cytoprotection are not clearly understood, it has been speculated that carbon monoxide (CO), a catalytic byproduct following heme catabolism by HO-1, may mediate cellular cytoprotection via its anti-inflammatory properties. Granulocyte macrophage colony-stimulating factor (GM-CSF) is a potent cytokine generated in response to bacterial endotoxin (lipopolysaccharide [LPS]) to stimulate proliferation, maturation, and effector functions of leukocytes, contributing to the proinflammatory responses to LPS. We hypothesized that HO-1 and/or CO could regulate the expression and production of GM-CSF. HO-1 overexpression, as well as exposure to a low concentration of CO, inhibited LPS-induced GM-CSF production in macrophages. Furthermore, CO inhibited LPS-induced GM-CSF induction via inhibition in the activation of the transcription factor NF-kappaB. CO inhibited LPS-induced activation of NF-kappaB, which has been shown to regulate GM-CSF transcription, by preventing the phosphorylation and degradation of the regulatory subunit IkappaB-alpha. These data raise the intriguing possibility that CO at low concentrations may play an important role in inflammatory disease states and thus has potential therapeutic implications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Respiratory Cell and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.