Abstract

Ni-containing carbon monoxide dehydrogenases (CODH), present in many anaerobic microorganisms, catalyze the reversible oxidation of CO to CO(2) at the so-called C-cluster. This atypical active site is composed of a [NiFe(3)S(4)] cluster and a single unusual iron ion called ferrous component II or Fe(u) that is bridged to the cluster via one sulfide ion. After additional refinement of recently published high-resolution structures of COOH(x)-, OH(x)-, and CN-bound CODH from Carboxydothermus hydrogenoformans (Jeoung and Dobbek Science 2007, 318, 1461-1464; J. Am. Chem. Soc. 2009, 131, 9922-9923), we have used computational methods on the predominant resulting structures to investigate the spectroscopically well-characterized catalytic intermediates, C(red1) and the two-electron more-reduced C(red2). Several models were geometry-optimized for both states using hybrid quantum mechanical/molecular mechanical potentials. The comparison of calculated Mössbauer parameters of these active site models with experimental data allows us to propose that the C(red1) state has a Fe(u)-Ni(2+) bridging hydroxide ligand and the C(red2) state has a hydride terminally bound to Ni(2+). Using our combined structural and theoretical data, we put forward a revised version of an earlier proposal for the catalytic cycle of Ni-containing CODH (Volbeda and Fontecilla-Camps Dalton Trans. 2005, 21, 3443-3450) that agrees with available spectroscopic and structural data. This mechanism involves an abnormal CO(2) insertion into the Ni(2+)-H(-) bond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.