Abstract
AbstractCarbon monoxide occurs in abundance throughout the cosmos, potentially in clathrate form, whereas on Earth, it forms a notable constituent of industrial flue gases. It has been proposed that hydrate technology could be used in CO2 separation from flue gases, and in subsea flue gas CO2 disposal. This—and the likely widespread occurrence of CO clathrates in the cosmos—means it is important that the phase behavior of CO hydrates is known. Here, we present experimental H‐L‐V (hydrate–liquid–vapor) equilibrium data for CO, COCO2, and COC3H8 (propane) clathrate hydrates. Data were generated by a reliable step‐heating technique validated using measured data for CO2 and CH4 hydrates. Data for CO and COC3H8 clathrates have been used in the optimization of Kihara potential parameters for CO, reported here, facilitating the extension of a thermodynamic model to the prediction of CO hydrate equilibria. Model predictions are validated against independent experimental data for COCO2 (structure I) systems, with good agreement being observed. © 2005 American Institute of Chemical Engineers AIChE J, 2005
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.