Abstract
The effect of a single vanadium dopant atom on the reactivity of small gold clusters is studied in the gas phase. In particular we investigated carbon monoxide adsorption on vanadium doped gold clusters using a low-pressure collision cell. Employing this technique the reactivity of both neutral and cationic clusters was studied under the same experimental conditions. Analysis of the kinetic data as a function of the pressure in the reaction cell shows that the reaction mechanism is composed of a fast adsorption and a delayed dissociation reaction. It is demonstrated that the reactivity of positively charged Au(n)V(m)(+) (n = 8-30, m = 0-3) is greatly enhanced as compared to the corresponding neutral species and that dissociation rates decrease with decreasing temperatures. While the overall magnitude of the reactivity does not change upon doping with vanadium clusters, the size dependence is significantly affected. The neutral singly vanadium doped gold clusters show a sudden drop after size Au(13)V, followed by a smooth increase, in contrast to the extended odd-even staggering for bare gold clusters. This difference can be explained by changes in the electronic structure of the clusters, related to the partly filled 3d shell of the vanadium dopant atom.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.