Abstract

The mechanism by which humans absorb therapeutic light in winter seasonal and nonseasonal depression is unknown. Bright-light-induced release and generation of blood-borne gasotransmitters such as carbon monoxide (CO) may be one mechanism. Here, 24 healthy female volunteers had peripheral blood samples drawn. Samples were collected in a dimly lit room and protected from light exposure. Samples were analyzed for CO concentrations by gas chromatography after 2 h of continuous exposure to darkness vs. bright white light. In a similar confirmatory study, 11 additional volunteers had samples analyzed for CO concentrations after 2 h of continuous exposure to gentle rocking in darkness vs. in bright white light. In the first study, light-unexposed peripheral blood had a mean CO concentration of 1.8 ± 0.4 SD ppm/g. Identically treated samples with 2 h of rocking and exposure to bright white light at illuminance 10,000 lux had a mean CO of 3.6 ± 1.2 ppm/g (p < 0.0001). Post hoc analysis of that study showed that time of day was significantly inversely associated with increase in CO concentration under bright light vs. dark (p < 0.04). In a smaller confirmatory study of 11 healthy female volunteers, after 2 h of rocking, light-unexposed peripheral blood had a mean CO of 1.4 ± 0.5 SD ppm/g. Identically treated blood samples with 2 h of exposure to bright white light at illuminance 10,000 lux had a mean CO of 2.8 ± 1.7 ppm/g (p < 0.02). In conclusion, bright-light exposure robustly increases human blood CO in vitro. This supports the putative role of CO as a physiological regulator of circadian rhythms and light’s antidepressant effects. This human evidence replicates earlier data from a preclinical in vivo model. This effect may be stronger in the morning than in the afternoon.

Highlights

  • Bright-light therapy is one of the best-studied nonpharmacological treatments for depressive disorders[1,2]

  • Effects of bright light In the first study, after samples of blood were taken from 24 women, we found that light-unexposed peripheral blood headspace gas had mean carbon monoxide (CO) concentration of 1.8 ± 0.4 SD ppm/g

  • This biochemical release was first documented over a century ago, our data confirm the finding with state-of-the-art chemical techniques

Read more

Summary

Introduction

Bright-light therapy is one of the best-studied nonpharmacological treatments for depressive disorders[1,2]. Using state-of-the-art techniques for precise quantitative measurement of CO production, we demonstrate the robust elevation of peripheral free blood CO concentrations after exposure to bright light of 10,000 lux illuminance, a standard brightness used in the treatment of depression.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.