Abstract

Translating carbon molecular sieve (CMS) membranes into highly scalable hollow fiber geometry with ultra-thin selective layer (<1µm) for gas separation remains as great challenge. The porous support layer of precursor hollow fiber membranes is prone to collapse during pyrolysis, which induces thick skin layer (15-50µm) of CMS hollow fiber membranes. Here, a novel strategy is present to obtain an ultra-thin selective skin layer by carbonization of hollow fiber membranes with porous skin. P84-based defect-free CMS hollow fiber membranes with ultra-thin selective skin layer (0.9µm) for gas separation are prepared without any coating or complex chemical pretreatment. Compared with the carbon membranes derived from defect-free fibers, the H2 permeance (93.9 GPU) of CMS membranes derived from the porous fibers increases ≈1353% with comparable selectivity of H2/CH4 (143) and higher H2/N2 (120). Furthermore, the porous fibers are pre-aged near the Tg in N2 conditions before carbonization, and the H2 permeance of the derived CMS hollow fiber membranes reached 147 GPU (increased 2180%). It is a new facile way to prepare CMS hollow fiber membranes with ultra-thin selective layer by porous fibers, demonstrating its versatile potential in gas separation or organic liquids separation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call