Abstract

Carbon molecular sieve (CMS) membranes are ideal candidates for natural gas separation due to their rigid pore structures and stability. The chemical composite and spatial configuration of the used precursors for deriving CMS membranes can greatly influence the final microporous structure and separation performance of the membranes. Most CMS membranes are transformed from amorphous precursors such as polymers nowadays. Here, for the first time, we report a new type of CMS membrane derived from a crystalline porous hydrogen-bonded organic framework membrane (named HCMS). The conversion process has been studied with the characterization of TGA, FTIR, XRD, SEM, and pore size distribution. The effect of pyrolysis temperature on the membrane structure has been investigated to achieve optimized CO2/CH4 separation performance. On the one hand, as the pyrolysis temperature increases from 550 to 650 °C, the pore size distribution of HCMS membrane is narrowed, which is conducive to improving the molecular sieving effect of the membrane. On the other hand, higher ratios of graphitic N and pyrrolic N, which show better affinity for CO2 molecules than pyridinic N, are obtained on the HCMS membranes, leading to more favorable adsorption of CO2. The optimized HCMS membrane pyrolyzed at 600 °C shows a remarkable CO2/CH4 selectivity of 128 and excellent separation stability at varying temperatures and pressures. The HCMS membranes derived from the crystalline HOF precursor can also maintain a stable separation performance against physical aging. The results reported in this work may open the door to constructing CMS membranes with the precursor of crystalline porous membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call