Abstract

Visible light-active carbon modified n-type titanium oxide (CM-n-TiO2) thin films were synthesized by both flame oxidation and a combination of spray pyrolysis and flame oxidation. An undoped reference sample was also synthesized in an electric oven for comparison. Photoresponse of CM-n-TiO2 and n-TiO2 was evaluated by measuring the rates of water splitting to hydrogen and oxygen, in terms of observed photocurrent densities. Under monochromatic illumination from a xenon lamp, the integrated photocurrent densities from 300 nm to wavelengths corresponding to band gaps were found to be 1.12, 7.7, and 12.7 mA cm−2 for optimized oven-made n-TiO2 (sample 1), flame-made (sample 2), and spray pyrolysis flame-made CM-n-TiO2 (sample 3) thin films at 0.48, 0.24, and 0.215 V biases, respectively. The corresponding maximum photoconversion efficiencies for these thin films were 0.84%, 7.62%, and 12.89%, respectively. Under actual natural global AM 1.5 sunlight illumination of 1 sun, the photocurrent densities for water splitting were 0.85, 5.89, and 12.27 mA cm−2 for samples 1, 2, and 3, respectively. These photocurrent densities generated the maximum photoconversion efficiencies of 0.67%, 5.63%, and 12.26% for samples 1, 2, and 3, respectively, under global sunlight illuminations. These values compared well with those found under monochromatic light illumination from the xenon lamp. The increasing efficiencies were found to be consistent with lowering of main band gap from 3.0 eV to 2.65 eV and the generation of mid-gap bands at 1.6 eV and 1.4 eV above the valence band for samples 2 and 3, respectively. Carbon contents were found to be 0.0, 17.60, and 23.23 atom% for samples 1, 2, and 3, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.