Abstract

The subantarctic Brassicaceae Pringlea antiscorbutica R. Br. (Kerguelen cabbage) was used as a model to study the physiological adaptations of higher plants to the subantarctic environment. 13C‐nuclear magnetic resonance permitted, in combination with biochemical methods, the identification and quantification of the major solutes in leaves, stem and roots. As characterized in many Brassicaceae, proline was a major solute in all organs of the plants, and its accumulation was mainly controlled by salt stress rather than temperature. Glucose was the major soluble sugar in the leaves, whilst sucrose and starch accumulated in stems and roots. Over a period of 1 year we found strong correlations between (i) glucose content in leaves and irradiance, and (ii) starch content in non‐photosynthetic organs and air temperature. The pattern of carbohydrate accumulation indirectly indicated that photosynthetis was sustained throughout the year, even during cold days when the temperature remained near 0 °C. This is consistent with the direct gas exchange measurements showing that photosynthetic capacity is mainly influenced by irradiance and weakly by temperature. Taken together, these characteristics demonstrated that the growth and development cycle occurs without a period of dormancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.