Abstract

Seawater desalination is viewed as a promising solution to world freshwater scarcity. Solar assisted desalination is proposed to overcome the high energy consumption in current desalination technologies, as it uses abundant and sustainable solar energy as the only energy input. Interfacial solar vapor generation (SVG) has attracted considerable research interest due to its high energy conversion efficiency, simple implementation, and cost-effectiveness. Among all the candidate materials for solar evaporators, carbon-based materials stand out due to their intrinsic high solar absorption, highly tunable structure, easy preparation, low cost, and earth-abundancy. In this review, the recent progress on carbon-based materials for the development of interfacial SVG is summarized. First, a brief introduction to the basic design principles of the interfacial SVG system is presented. Then, recent efforts in carbon-based solar evaporators, from artificial structures to bioinspired configurations, focusing on their structure-function relationship are highlighted. Strategies for designing antisalt-fouling desalination systems are also summarized. Last, the challenges and opportunities of carbon-based materials for solar evaporation technology are elaborated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call