Abstract

Flow-electrode capacitive deionization (FCDI) offers an electrochemical, energy-efficient technique for water desalination. In this work, we report the study of carbon-based FCDI, which consists of one desalination chamber and one salination chamber and applies a carbon nanomaterials-based flow electrode that circulates between the cell anode and cathode, to achieve a fast, continuous desalination process. Five different carbon nanomaterials were used for preparing the flow electrode and were studied for the desalination performance, with properties including average salt removal rate (ASRR), salt removal efficiency (SRE), energy consumption (EC) and charge efficiency (CE) being quantitatively determined for comparation. Different FCDI parameters, including carbon concentration and flow rate of the flow electrode and cell voltage, were investigated to examine the influences on the desalination. Long-term operation of the carbon-based FCDI was evaluated using the optimal results found in the conditions of 1.5 M concentration, 1.5 V cell voltage, and 20 mL min−1 flow rate of electrode and water streams. The results showed an ASRR of 63.7 µg cm−2 min−1, EC of 162 kJ mol−1, and CE of 89.3%. The research findings validate a good efficiency of this new carbon-based FCDI technology in continuous water desalination and suggest its good potential for real, long-term application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call