Abstract
Altered primary productivity associated with eutrophication impacts not only ecosystem structure but also the biogeochemical cycling of oxygen and carbon. We conducted laboratory experiments to empirically determine how residence time (1, 3, 10 d) influences eutrophication responses in a simplified Pacific Northwest Zostera marina-green macroalgal community. We expected long-residence time (RT) systems to exhibit eutrophication impairments. Instead, we observed an accumulation of nutrients at all RTs and a shift in the dissolved inorganic carbon speciation away from CO2 (aq) with unexpected consequences for eel grass plant condition, including shoot mortality. Most metrics responded more strongly to temperature treatments than to RT treatments. No dramatic shifts in the relative abundance of Z. marina and green macro algae were detected. Z. marina shoot density proliferated in cool temperatures (12°C) with a modest decline at 20°C. Eelgrass loss was associated with high total scale pH (pHT) and CO2 (aq) concentrations of <10 μmol kg-1 CO2 (aq), but not with high nutrients. Z. marina δ13C values support the hypo thesis that carbon availability was greater at short RT. Further, very low leaf sugar concentrations are consistent with extreme photosynthetic CO2 (aq) limitation. We suggest that the effects of extremely low environ mental car bon concentrations (CO2 (aq)) and increased respiration at warm temperatures (20°C) and other physiological processes can lead to internal carbon limitation and shoot mortality. Eutrophication responses to nutrient loading are more nuanced than just light limitation of eelgrass and require additional research on the interaction of the biogeochemical environment and plant physiology to better understand estuarine ecosystem disruption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.