Abstract

Carbon Isotopic Fractionation Across A Late Cambrian Carbonate Platform: A Regional Response To The SPICE Event As Recorded In The Great Basin, United States by Jonathan Lloyd Baker Dr. Ganqing Jiang, Examination Committee Chair Associate Professor of Geoscience University of Nevada, Las Vegas Geochemical models have suggested that the late Cambrian was characterized by a greenhouse climate with high pCO2. Furthermore, stableisotope analyses within the Great Basin have documented a large carbonate isotope (δ13Ccarb) excursion, known as the Steptoean Positive Carbon Isotope Excursion (SPICE). This event has been documented globally, and is interpreted as having resulted from enhanced organic carbon burial. Unless the size of carbon reservoirs in the Cambrian ocean was significantly different from those of the Cenozoic, this forcing should have resulted in a comparable carbon-isotope excursion in organic matter (δ13Corg). It is also predicted that increased organic carbon burial would lower atmospheric CO2, which may cause global cooling and a reduction in carbonate-organic carbon isotope fractionation. To test these predictions, paired carbonate and organic carbon isotope data are reported here from carbonate stratigraphic sections at Shingle Pass, Nevada and in House Range, Utah. At Shingle Pass, δ 13Corg values record a positive excursion that roughly mirrors δ 13Ccarb values at a similar magnitude, suggesting an oceanographic control on the carbon isotope trend. In the House Range section, iii although δ 13Corg values show a rough positive shift associated with positive δ13Ccarb, the magnitude is smaller and values show minor shifts across the excursion. However, constructing a time-equivalent overlay of data from both sections using key stratigraphic boundaries resolved apparent discrepancies, suggesting a regional control on carbon isotopic fractionation. The difference between carbonate and organic carbon isotope values (Δ13C = δ13Ccarb – δ13Corg) averages 27‰ to 28‰ in both sections, but increases to 30‰ at the peak of the excursion and falls to as low as 25‰ immediately after the Sauk II/III sequence boundary. Temporal variations in Δ 13C do not follow the predicted atmospheric CO2 changes before the δ13Ccarb peak of the SPICE, as might have been derived from the increased organic carbon burial model for the origin of the SPICE event, and indicates that the carbon isotope fractionation was less sensitive to atmospheric CO2 changes when ambient CO2 was high. The abrupt drop in Δ13C after the δ13Ccarb peak of the SPICE is consistent with low atmospheric CO2 and the potential evolution of photosynthetic organisms in adapting to CO2-limited environments with stronger bicarbonate uptake during carbon fixation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.