Abstract
Accumulation of vinyl chloride (VC) is often a main concern at sites contaminated with chlorinated ethenes and ethanes due to its high toxicity. Since there can be several possible sources of VC and ethene at such sites, assessing the origin and fate of VC can be complicated. Aim of this study was to evaluate carbon isotope fractionation associated with various anaerobic processes that lead to the production of VC and ethene in view of using isotopes to evaluate the origin and fate of these compounds in groundwater. Microcosms were constructed using sediments and groundwater from a contaminated site and amended with potential precursors for VC and ethene production. In the microcosms with dichloroethene isomers, sequential reductive dechlorination was observed, and isotopic enrichmentfactors of -19.9 +/- 1.5 per thousand for cis-1,2-dichloroethene, -30.3 +/- 1.9 per thousand for trans-1,2-dichloroethene, and -7.3 +/- 0.4 per thousand for 1,1-dichloroethene were obtained. In microcosms with chlorinated ethanes, 1,2-dichloroethane (1,2-DCA) and 1,1,2-trichloroethane (1,1,2-TCA) were predominantly transformed by dichloroelimination to ethene and VC, respectively, and enrichmentfactors of -32.1 +/- 1.1 per thousand for 1,2OCA and -2.0 +/- 0.2 per thousand for 1,1,2-TCA were observed. Except for 1,1,2-TCA, a strong 13C enrichment in each of the potential precursor of VC was observed, which opens the possibility to trace the origin of VC based on the isotope ratio of potential precursors. Furthermore, it was possible to model the isotope evolution of VC present as substrate or intermediate product as a function of time. The study demonstrates that carbon isotope ratios can potentially be used for qualitative and possibly quantitative evaluation of the origin and fate of VC at sites with complex contaminant mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.