Abstract
We analysed isotopic compositions of metamorphic microdiamond secondary ion mass spectrometry. Typical microdiamonds in this dolomite marble show star-shaped morphologies (S-type) consisting of single-crystal cores and polycrystalline rims. Four S-type microdiamonds and two R-type microdiamonds (single crystals with rugged surfaces) were analysed using a 5 μm diameter ion beam. S-type microdiamonds have heterogeneous carbon isotopic compositions even in a single grain. Analysis of a typical S-type microdiamond (no. xx01-1-13) revealed clear difference in δ13C between core and rim. The rim shows lighter isotopic compositions ranging from −17.2‰ to −26.9‰, whereas the core is much heavier, with δ13C ranging from −9.3‰ to −13.0‰. The δ13C values of R-type microdiamonds fall into narrow ranges from −8.3‰ to −14.9‰ for no. xx01-1-10 and from −8.3‰ to −15.3‰ for no. xx01-1-16. These δ13C values are similar to those of the S-type microdiamond cores. The R-type probably formed at the same stage as the core of the S-type, whereas rim growth at a second stage did not occur or occurred very weakly in R-type microdiamonds. These carbon isotopic data support the two-stage growth of microdiamonds in the Kokchetav ultrahigh-pressure host rock. To explain the second stage growth of S-type microdiamonds, we postulate a simple fluid infiltration of light carbon from neighbouring gneisses into the dolomite marble.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.