Abstract

We tested the hypothesis that life forms (trees, shrubs, forbs, and mosses; deciduous or evergreen) can be used to group plants with similar physiological characteristics. Carbon isotope ratios (δ13C) and carbon isotope discrimination (Δ) were used as functional characteristics because δ13C and Δ integrate information about CO2 and water fluxes, and so are useful in global change and scaling studies. We examined δ13C values of the dominant species in three boreal forest ecosystems: wet Picea mariana stands, mesic Populus tremuloides stands, and dry Pinus banksiana stands. Life form groups explained a significant fraction of the variation in leaf carbon isotope composition; seven life-form categories explained 50% of the variation in δ13C and 42% of the variation in Δ and 52% of the variance not due to intraspecific genetic differences (n=335). The life forms were ranked in the following order based on their values: evergreen trees<deciduous trees=evergreen and deciduous shrubs=evergreen forbs<deciduous forbs=mosses. This ranking of the life forms differed between deciduous (Populus) and evergreen (Pinus and Picea) ecosystems. Furthermore, life forms in the Populus ecosystem had higher discrimination values than life forms in the dry Pinus ecosystem; the Picea ecosystem had intermediate Δ values. These correlations between Δ and life form were related to differences in plant stature and leaf longevity. Shorter plants had lower Δ values than taller plants, resulting from reduced light intensity at lower levels in the forest. After height differences were accounted for, deciduous leaves had higher discrimination values than evergreen leaves, indicating that deciduous leaves maintained higher ratios of intracellular to ambient CO2 (c i/c a) than did evergreen leaves in a similar environment within these boreal ecosystems. We found the same pattern of carbon isotope discrimination in a year with above-average precipitation as in a year with below-average precipitation, indicating that environmental fluctuations did not affect the ranking of life forms. Furthermore, plants from sites near the northern and southern boundaries of the boreal forest had similar patterns of discrimination. We concluded that life forms are robust indicators of functional groups that are related to carbon and water fluxes within boreal ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.