Abstract
Zirconium nitride (ZrN) thin films are irradiated with 800keV energetic carbon (C) ions in a 5UDH-Pelletron accelerator and the ions irradiation induced effects are investigated. The films are irradiated at various C ions fluences, ranging from 1013 to 1015ions/cm2. The scanning electron microscopy study of the films indicates the development of zirconium (Zr) nanoparticles at ions irradiated region. X-ray diffraction (XRD) patterns of C ions irradiated films also show the formation of (100) and (002) oriented nanocrystalline metallic Zr phases. The irradiated films spectra depict a shift in ZrN peaks towards higher 2θ values, exhibiting that C ions bombardment induces compressive stress in the irradiated films. The appearance of C related peaks in Fourier transform infrared (FTIR) spectra confirms the incorporation of C atoms into ZrN film. Compressive stress has been calculated from the IR peak shift which indicates that higher ion dose (≥5×1014ions/cm2) produce lower compressive stress relative to the lower ions fluences. Effect of ion dose on the film resistivity is also reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.